AnthonyZero's Bolg

Java学习系列:HashMap实现原理

HashMap概述

HashMap是基于哈希表的Map接口的非同步实现。此实现提供所有可选的映射操作,并允许使用null值和null键。此类不保证映射的顺序,特别是它不保证该顺序恒久不变

HashMap的数据结构

在java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,HashMap也不例外。HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体(以数组存储元素,如有hash相同的元素,在数组结构中,创建链表结构,再把hash相同的元素放到链表的下一个节点

Alt text

transient Entry[] table;  

static class Entry<K,V> implements Map.Entry<K,V> {  
    final K key;  
    V value;  
    Entry<K,V> next;  
    final int hash;  
    ……  
}

可以看出,Entry就是数组中的元素,每个 Map.Entry 其实就是一个key-value对,它持有一个指向下一个元素的引用,这就构成了链表

数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的。
如果定位到的数组位置不含链表(当前entry的next指向null),那么对于查找,添加等操作很快,仅需一次寻址即可。
如果定位到的数组包含链表,对于添加操作,其时间复杂度依然为O(1),因为最新的Entry会插入链表头部,急需要简单改变引用链即可,而对于查找操作来讲,此时就需要遍历链表,然后通过key对象的equals方法逐一比对查找。所以,性能考虑,HashMap中的链表出现越少,性能才会越好

HashMap的put实现

public V put(K key, V value) {  
    // HashMap允许存放null键和null值。  
    // 当key为null时,调用putForNullKey方法,将value放置在数组第一个位置。  
    if (key == null)  
        return putForNullKey(value);  
    // 根据key的keyCode重新计算hash值。  
    int hash = hash(key.hashCode());  
    // 搜索指定hash值在对应table中的索引。  
    int i = indexFor(hash, table.length);  
    // 如果 i 索引处的 Entry 不为 null,通过循环不断遍历 e 元素的下一个元素。  
    for (Entry<K,V> e = table[i]; e != null; e = e.next) {  
        Object k;  
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {  
            V oldValue = e.value;  
            e.value = value;  
            e.recordAccess(this);  
            return oldValue;  
        }  
    }  
    // 如果i索引处的Entry为null,表明此处还没有Entry。  
    modCount++;  
    // 将key、value添加到i索引处。  
    addEntry(hash, key, value, i);  
    return null;  
}

从上面的源代码中可以看出:当我们往HashMap中put元素的时候,先根据key的hashCode重新计算hash值,根据hash值得到这个元素在数组中的位置(即下标),如果数组该位置上已经存放有其他元素了,那么在这个位置上的元素将以链表的形式存放,新加入的放在链头,最先加入的放在链尾。如果数组该位置上没有元素,就直接将该元素放到此数组中的该位置上

当系统决定存储HashMap中的key-value对时,完全没有考虑Entry中的value,仅仅只是根据key来计算并决定每个Entry的存储位置。我们完全可以把 Map 集合中的 value 当成 key 的附属,当系统决定了 key 的存储位置之后,value 随之保存在那里即可
HashMap是如何解决hash冲突的问题,核心就是使用了数组的存储方式,然后将冲突的key的对象放入链表中,一旦发现冲突就在链表中做进一步的对比。

HashMap的get实现

public V get(Object key) {  
    if (key == null)  
        return getForNullKey();  
    int hash = hash(key.hashCode());  
    for (Entry<K,V> e = table[indexFor(hash, table.length)];  
        e != null;  
        e = e.next) {  
        Object k;  
        if (e.hash == hash && ((k = e.key) == key || key.equals(k)))  
            return e.value;  
    }  
    return null;  
}  

从上面的源代码中可以看出:从HashMap中get元素时,首先计算key的hashCode,找到数组中对应位置的某一元素,然后通过key的equals方法在对应位置的链表中找到需要的元素

归纳起来简单地说,HashMap 在底层将 key-value 当成一个整体进行处理,这个整体就是一个 Entry 对象。HashMap 底层采用一个 Entry[] 数组来保存所有的 key-value 对,当需要存储一个 Entry 对象时,会根据hash算法来决定其在数组中的存储位置,在根据equals方法决定其在该数组位置上的链表中的存储位置;当需要取出一个Entry时,也会根据hash算法找到其在数组中的存储位置,再根据equals方法从该位置上的链表中取出该Entry

HashMap的扩容机制

当HashMap中的元素越来越多的时候,hash冲突的几率也就越来越高,因为数组的长度是固定的。所以为了提高查询的效率,就要对HashMap的数组进行扩容,数组扩容这个操作也会出现在ArrayList中,这是一个常用的操作,而在HashMap数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是resize。

HashMap的两个重要属性是容量capacity和装载因子loadfactor,默认值分别为16和0.75,当容器中的元素个数大于 capacity*loadfactor = 12时,容器会进行扩容resize 为2n,在初始化Hashmap时可以对着两个值进行修改,负载因子0.75被证明为是性能比较好的取值,通常不会修改,那么只有初始容量capacity会导致频繁的扩容行为,这是非常耗费资源的操作,所以,如果事先能估算出容器所要存储的元素数量,最好在初始化时修改默认容量capacity,以防止频繁的resize操作影响性能
Java8对hashmap做了优化 ,底层有两种实现方法,一种是数组和链表,一种是数组和红黑树,hashmap会根据数据量选择存储结构
if (binCount >= TREEIFY_THRESHOLD - 1)
当符合这个条件的时候,把链表变成treemap,这样查找效率从o(n)变成了o(log n)

Fail-Fast机制

我们知道java.util.HashMap不是线程安全的,因此如果在使用迭代器的过程中有其他线程修改了map,那么将抛出ConcurrentModificationException,这就是所谓fail-fast策略
这一策略在源码中的实现是通过modCount域,modCount顾名思义就是修改次数,对HashMap内容的修改都将增加这个值,那么在迭代器初始化过程中会将这个值赋给迭代器的expectedModCount

HashIterator() {
    expectedModCount = modCount;
    if (size > 0) { // advance to first entry
        HashMapEntry[] t = table;
        while (index < t.length && (next = t[index++]) == null)
            ;
    }
}

在迭代过程中,判断modCount跟expectedModCount是否相等,如果不相等就表示已经有其他线程修改了Map
注意到modCount声明为volatile,保证线程之间修改的可见性。(volatile之所以线程安全是因为被volatile修饰的变量不保存缓存,直接在内存中修改,因此能够保证线程之间修改的可见性)

解决办法

  • 使用线程安全的ConcurrentHashMap或HashTable,它就不会产生ConcurrentModificationException异常,也就是它使用迭代器完全不会产生fail-fast机制
  • Collections.synchronizedMap将HashMap包装起来

什么是HashMap?你为什么用到它

HashMap可以接受null键值和值,而Hashtable则不能;HashMap是非synchronized;HashMap很快;以及HashMap储存的是键值对等等

HashMap的工作原理 HashMap的get()方法的工作原理

HashMap是基于hashing的原理,我们使用put(key, value)存储对象到HashMap中,使用get(key)从HashMap中获取对象。当我们给put()方法传递键和值时,我们先对键调用hashCode()方法,返回的hashCode用于找到bucket位置来储存Entry对象…”这里关键点在于指出,HashMap是在bucket中储存键对象和值对象,作为Map.Entry

当两个对象的hashcode相同会发生什么

因为hashcode相同,所以它们的bucket位置相同,‘碰撞’会发生。因为HashMap使用链表存储对象,这个Entry(包含有键值对的Map.Entry对象)会存储此位置中的链表中(同一位置上的链表的每个Map.Entry元素的键的hashcode是相同的)

如果两个键的hashcode相同,你如何获取值对象

hashcode找到bucket位置之后,会调用keys.equals()方法去找到链表中正确的节点,最终找到要找的值对象

如果HashMap的大小超过了负载因子(load factor)定义的容量,怎么办

默认的负载因子大小为0.75,也就是说,当一个map填满了75%的bucket时候,和其它集合类(如ArrayList等)一样,将会创建原来HashMap大小的两倍的bucket数组,来重新调整map的大小,并将原来的对象放入新的bucket数组中。这个过程叫作rehashing,因为它调用hash方法找到新的bucket位置

你了解重新调整HashMap大小存在什么问题吗

当重新调整HashMap大小的时候,确实存在条件竞争,因为如果两个线程都发现HashMap需要重新调整大小了,它们会同时试着调整大小。在调整大小的过程中,存储在链表中的元素的次序会反过来,因为移动到新的bucket位置的时候,HashMap并不会将元素放在链表的尾部,而是放在头部,这是为了避免尾部遍历(tail traversing)。如果条件竞争发生了,那么就死循环了。所以不要在多线程的环境下使用HashMap,因为他是线程不安全的

为什么String, Interger这样的wrapper类适合作为键

String, Interger这样的wrapper类作为HashMap的键是再适合不过了,而且String最为常用。因为String是不可变的,也是final的,而且已经重写了equals()和hashCode()方法了。其他的wrapper类也有这个特点。不可变性是必要的,因为为了要计算hashCode(),就要防止键值改变,如果键值在放入时和获取时返回不同的hashcode的话,那么就不能从HashMap中找到你想要的对象。不可变性还有其他的优点如线程安全。如果你可以仅仅通过将某个field声明成final就能保证hashCode是不变的,那么请这么做吧。因为获取对象的时候要用到equals()和hashCode()方法,那么键对象正确的重写这两个方法是非常重要的。如果两个不相等的对象返回不同的hashcode的话,那么碰撞的几率就会小些,这样就能提高HashMap的性能。